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ABSTRACT

An application of linear predictive spectral analysis, in particular
the forward-and-backward averaging procedure, to tones in noise is made. The
accurate tone-frequency estimation capability and lack of tone-splitting make
this an attractive technique for spectral analysis and estimation of tone
amplitudes. The effect of inadequate pole-order on the spectral estimate in
white and colored noise is investigated in a number of examples. The examples
here indicate that the linear predictive technique should receive wider appli-
cation for spectral analysis in the realm of underwater acoustics. Two programs
in BASIC for the Hewlett Packard 9845 for the cases of real and complex data
have been written and are available from the author; they are modifications to
the original program in FORTRAN written by S.L. Marple.
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INTRODUCTION

The linear predictive technique of spectral analysis has received a great
deal of attention lately; see refs. 1 and 2 and the references listed therein. A
comparison of several linear predictive techniques was made in ref. 3, Qith the
conclusion that the then newly-proposed forward-and-backward (F&B) averaging
technique and the Burg technique (ref. 4) were as good as any currently available.
The reason that the Burg technique has been preferred over the F&B technique is
not due to the quality of the spectral estimate (see ref. 3, page 8l), but main-
ly that a recursive procedure exists for the solution of the matrix equations
for the Burg technigue, whereas a full-order matrix inversion was reguired for
the F&B technique at each filter-order considered. The fact that the F&B technique
can occasionally (rarely) yield an unstable correlation recursion or a spiky
spectral estimate (ref. 3, pages 41 and 35), is not a severe limitation of the
technique in practice; in fact, for data sets of 100 points or more, this author
has not yet seen any e#amples of poles outside the ﬁpit circle in the z-plane,
although some have come extremely close.

A recent contribution by Marple, ref. 5, has now altered the computational
situation considerably. Specifically, he has derived a recursive algorithm for
the solution of the matrix equations of the F&B technique, where the number of
computations are comparable tq that required for the Burg technique. Furthermore,
he has shown that the F&B technique is not subject to line-splitting (ref. 6), as
the Burg technique is, nor are the spectral peaks as biased when estimating the tone
frequency location. The reason for these desirable features is that the F&B tech-

nique is an unconstrained p-th order leastsquares minimization, whereas the Burg
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technique is a constrained progressive-minimization procedure, structured so as to
satisfy a preconceived recursive algorithm (ref. 3, sections 4.6 and 4.7).
Accordingly, it is now reasonable and well-advised to reconsider the F&B
linear predictive technique for spectral analysis of typical underwater acoustic
waveforms which can include several tones of widely different levels in colored
noise. 1In view of the "global" optimization property (ref. 1, page 572) of the
linear predictive technique, such high dynamic-range spectra should not be too
adverse cases for consideration. This memorandum will consider several such

examples and point out some important features and properties of the linear pre-

dictive F&B technique.
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POWER CONTRIBUTION FROM ONE POLE-PAIR
The power density spectral estimate of the linear predictive technique

takes the form, at p-th order, of (ref. 1, page 568)

AE - aE —, Wi )

) 0 ex? 2‘"““‘ 4) ‘ ] a (exy (i 'ZW‘FA))

where polynomial
-k
Q) = % ReZ (2)
k=0

A is the time-sampling increment, E is the prediction-error power at p-th order,

@, =1, and iﬂ,&f are the p-th order prediction-filter coefficients. Generalizing

(1) to the complex z-plane, and allowing for complex data and filters, we express

(1) as

Y=
PO o T o
meaning that the spectral estimate in (1) is given by

¢ (ex?(iZwrfA)) = PE. (4)

Now if a(z) has a zero at zo, which is near the unit circle in the z-plane,

then P(-A has a pole-pair at the points Z s l /zo*, which are both close to the unit

circle and located on the same radius vector; see figure 1. This gives rise to a

= exp (i arg (2,))
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peak in the spectral function P(f), near the frequency

‘FE%@’&M;(;L’

(5)
~!
where ‘fﬂ'-'-(.'.’.n) is the Nyquist frequency. And if |Z]# |, the spectral peak is

very large and narrow, with 3 dB bandwidth B approximately equal to

B = 2(0-13) 4 _ 2(-#= £,

T 24 (6)

If the values of f,at which P(f) is calculated, have an increment larger
than bandwidth (6), the peak of this spectral component can be missed, and a mis-
leading spectral calculation can result. One way to alleviate this situation is
to calculate the power contribution due to the pole-pair in figure 1, and output
this information in addition to calculated values of the spectral estimate. We

evaluate this power as follows: express (3) as

03(2) - &(i‘) ~ &(C) _ ﬁ (:\.)

FRED) | FaED

for z near z; see figure 1. The approximation to the spectrum in the neighborhood

(7)

of C° in figure 1 is

. Re) ®
ﬁ(wy(u'lwﬂ)) = \exp(i2rts)-=|" |

The area under this approximation is called the power contribution of the pole-pair

corresponding to 2-03_;:@ is given by the integral over the gntire frequency interval:
o —’/S‘

dof ﬁ(.ejxy(iZTfAs = T%:é‘%@(z)

= K _ 2 Re) )
-T2J1—r: di(z—i‘o)(l-zz.*) T

where 5 denotes counter-clockwise integration around the unit circle in the z-plane.

ézesult (9) presumes IZ)<1; if IZ]> |, we get M(C.)/(]i,l"— I})
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Now we eliminate unknown ﬁ((;,) from (9), by observing from (7) that

_ R) ) (10)
P - G-2)(C-=)  (1-m)

Then (9), (3), (2), and (5) yield for the pole-power

. PQ) rl ___E -l
o a4 al [ Hi=l

= el T (11)
].?_—a,, exp (—( 21;-1%5 \()'2 EREA

This calculation require$ that one evaluate both the magnitude and argument of the

pole location z of P(a) under investigation, since
s A
G = wxr(t’lﬂ‘s\) = exp (( arg(z,)}, (12)

Recall that {a,‘} are the filter coefficients, and E is the prediction-error power,
all quantities evaluated for p-th order. Alternatively, z, is a zero location of
Af3) defined in (2).

For a real process, pole-pairs of P(’t) occur in conjugate sgmmetry, and the
spectrum P(f),A given by (4), is even about f._lo‘ It is then convenient to plot only
positive frequencies, from Q to f,, and double th.e results above. Then we have for

the pole-power contribution
2E J-l12)

’PD ((2“‘ da"zx) = }%aj‘ ox -;2W£Ak>]z ‘+,%'

The 3-dB bandwidth is unchanged from (6), however.

(13)




T™ No.
791218

VOLTAGE AMPLITUDE OF A POLE-PAIR

Although the pole locations of P&)in (3) give a good indication of the
frequencies of pure tones, the estimated power contributions due to these poles
are not always good indicators of the amplitudes of pure tones, because a slight
radial movement of a pole near the unit circle causes a large change in the esti-
mated power contribution; see (11). This becomes a very pronounced effect for
tones with a large SNR (signal-to-noise ratio), a condition where we should expect
better indicators rather than poorer ones. Therefore, an alternative technique to
using the peole ~power contribution is preferred.

Since we have a good estimate fo of a tone fregquency from (5), we can

estimate the corresponding tone amplitude according to

| -}{r\ ”:‘Z}Xn @xr(-i%r{,an)

N
where {X;}, is the available data. (For real data, we must take 2 times this

(14)

)

result). As a refinement, we could perturb fo slightly, to find the local maxi~
mum of this function. This has been found to be a good technique in practice,
for high SNR tones. It gives a low-amplitude indication for spectral peaks due
to spurious poles, and a high-amplitude indication for strong tones that are
actually present. We needn't perform a fine-grained search over all frequencies,
because we simply choose frequency fo according to (5). Of course, we have to
solve for the corresponding zero zo cf 62(2) ; however, a recursive procedure is

described for this zero location in appendix A.

10
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LINEAR PREDICTION OF TONES
We will concentrate here on multiple tones sans noise. Anticipation of
good approximations, via linear predictive techniques applied to tones, can be
justified by consideration of the following. Let complex waveform x(t) be com-
posed of K complex exponentials of arbitrary amplitudes, frequencies, and phases,

but no additive noise:
X
x(t) = ZAK exp (i 2rdt +i9,<>, (15)
Then data value |
X : . X '
X, = X(nA) = EAK e,xP(Q-rF,‘AnHGK) = g&(") (16)

It follows that

ﬁexia( L}lr'FkA)gk(n)

K=1 (17)

K
X, x = 2-exp(-i 2mh a K) G (0.

" Now these K linear equations can be solved for 3K(n)) }< k<K, and the results
substituted in (16). The end result is an exact expression for data value X in

terms of past data values according to

Z
= a, X (18)
" = K -k 2

where coefficients {ak} involve Lxr(~i2-w-£‘Am>) )s.k,ms K That is, xn can be
perfectly linearly-predicted in terms of its past K data values, when there is no
additive noise. Thus pufe tones are good candidates for a linear predictive ap-

proach. Of course, since Xp.x €20 be expressed in terms of X, .., ,.., Xn, from

11
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(18), it also means that backward prediction is perfect, in the absence of noise.

As examples, we have the following:

for k=1,
= - ¥ . (19)
X" = Q, X'_’ 5 X,, - e' X,,,” ’
for K=2,
X,, = (C;"’ e;) Xn-a = (el e,) Xn-2 » (20)
Xn = (CFFCQ{-X”" "(e'e;f.x»n.i
for k=3, ‘
= (e e+ )%, , - (664 6.8+ &,8) X, + (6,6,6) X3 3 (21)
where

exy(i iy 4} : (22)

&

The general pattern for any K is now obvious from (19)-(21).

It should be pointed out that if a dc component is present in the data, this
corresponds to one of the £‘: 0. Alternatively, if a process contains no dc
component, but we subtract its (non-zero) sample mean, we are creating a dc com-
ponent in the process, thereby requiring onelarger order for perfect prediction.

This behavior is illustrated in appendix B.

12
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EXAMPLES
Our first example is five equal-amplitude complex exponentials in no
noise. As shown in (16)-(18), perfect prediction is possible with a p=5th order

filter, (except for calculator roundoff). We selected frequencies
_-_E_ = —,65, 3%, .22,.70, . 85, (23)
N

The results of the spectral analysis procedure* for N= 100 complex data
points and a 1024-point FFT over the ¥ Nyquist frequency band are given in 4B in
figure 2 for p = 5. All the plots are normalized so that their peak value reaches
‘the top of the 70dB range plotted. The magnitudes and arguments of the 5 zero

locations of a(E) are given in table 1.

Magnitude : Argumentfw = ﬁ/qg__
.999714 -.649911

.999822 -.379931

.999916 | | .220052

.999105 .699925

.999013 " .850057

Table 1. Zero Locations of (1(3 for Five Tones; p = 5.

It will be observed that all zeros lie just inside the unit circle, rather
than on it, and that the frequéncy estimate associated with each zero is accurate,
but not perfect. This is due to the subtraction §f the sample mean; see appendix
B. The spectral amplitudes depicted in figure 2 differ amongst themselves by

12 dB, even though the true tone amplitudes were equal; there are two reasons for

*The sample mean was subtracted from the data set; see appendix B for a discussion

of this effect. All of the results to follow also correspond to subtraction of sample

mean.

13
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this. One is that the spéctral function P(f) in (1) was calculated at only 1024
points in the +Nyquist frequency range, and therefore the very narrow widths of
the peaks in P(f) have not been adequately sampled. 1In fact, the 3-dB bandwidths,
B/fﬂ,of the 5 peaks in figure 2 are, from (6), (1.82, 1.13,0.54, 5.7, 6.29)10-4
respectively, which are smaller than the frequency sampling increment 2/1024 =

20 x 10-4. This frequency sampling computation effect will contribute greatly to
the apparent fluctuation in peak spectral indication, and can be alleviated by
taking larger-size FFTs, or by calculating P(f) more finely just in the neighbor-
hood of the peak indication.

The second reason is that the peaks of P(f) do not necessarily have to
reflect true tone powers; rather it is the area under each peak which is indicative
of that tone power; see ref. 7 . A calculation of these pole-powers according to
(11) yields values .971, .967, .945, .999, and .994 respectively, compared with
the exact value of 1. The tone gplitudes, as calculated according to (14), are
.970, .980, .980, .981,and .971 respectively, instead of 1. Perturbation of fo
in (14), about the value (5), did not significantly change the peak of (14).

When the order of the predictive filter is taken to be p=4, instead of the
correct value of 5 for this complex data example, the results are as indicated in
figure 3. The two clecsesttones at .7 and .85 are not resolved. The pole-powers
" are given as .99, 1.24, 1.03, and 1.85 respectively, indicating a lumping together
of the two closest tones. The tonal amplitudes are grossly in error since none
of the 5 frequencies were estimated accurately enough. This example points out

the deleterious effect of too low an order,r,for the predictive filter.

14
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Our next example consists of the same five complex exponentials with white
noise added, to yield a signal-to-noise power ratio (SNR) of 7.8 dB per tone,
as measured in the Nyquist frequency interval (-Fk)fi). First, in figure 4 is
presented the spectral plot for a fifth-order prediction filter, p=5. The fre-
quency estimates according to (5) are in error by IF/ﬁJ =.004, on the average.
The pole-powers and tone amplitudes‘are 1.06, 1.10, 1.01, .93, 1.22 and .97, .88,
.96, .67, 1.02 respectively.

When we repeat this same example with p changed to 10, the situation is
much improved, as figure 5 indicates. The frequency estimates are now in error
by [f/{;l =,0007, on the average. The pole—péwers and tone amplitudes are 1.05, .83,
1.00, .76, 1.30 and 1.00, 1.04, .99, .92, 1.02 respectively. We notice a signi-
ficant improvement in amplitude estimation, which is due mainly to the improved
frequency estimates. The pole-~powers are more erratic ﬁhaq for figure 41 ”“"mmm

When the SNR per tone is’ reduced further, to 0 dB as measured in the Nyquist!
band, the results in figures 6 and 7 are obtained for p=10 and 15 respéctively.
The pole-powers vary significantly from the true values foriboth examples; however,
the tonal amplitude estimates for p=15 in figure 7 are rather good: 1.04, 1.11,
1.01, .85, 1.08. The frequency estimates are better for p=15, being in error
by ‘f/ﬁJ = .00073 on the average. These results are comparable to the highér
SNR results in figure 5 where p=10 was used. When p is changed to 25, results
substantially equivalent to figure 7 were obtained, except that there were pro-
portionally more peaks and sharper tonal indication;; see figure 8. The large
variation in peak values (21dB) is not too significant when we recail.fhe fre-

quency sampling and tone-power considerations discussed earlier.
r .

The SNR of each tone is the ratio of each tone power to the total noise power,

0’;:' , in the Nyquist band (—-FN ,‘FN),

15
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We now consider a case of N=1000 real data points with 9 tones of unequal

value in white noise.

are listed in table 2.

Specifically, the tonal amplitudes, powers, and frequencies

Amplitude

[SLREN I = o) B FS I B S IV I o

Table 2.

Frequency/Nyquist

Nine-Tone Example

for p=18, 20, and 25, respectively for noise power €: =<,

the data, we only need plot

p=18§ barely gives any indication of the weak tone at £f/fy =
that 9 real tones can be predicted via an 18 pole filter if
Increasing p to 20 or 25 clearly indicates all 9 tones.
figures 9-11 are not important, for reasons already discussed.

the estimated tonal amplitudes, powers, and frequencies.

p=20
Amplitude Power E§aggggcy/
0.9944 0.524 .109834
4.9931 11.324 .190012
1.9844 1.983 .319871
8.0100 33.175 .410001
3.0033 4.691 .529956
5.9866 18.917 .619992
0.9352 0.495 .690411
6.9967 23.956 .770020
4.9837 14.663 .890013
Table 3.

Estimated Parameters for Nine Tones

16

12

the even spectrum from O to

11
.19
.32
.41
.53
.62
.69
.77
.89

Spectral analysis results are presented in figures 9-11,

Due to the realness of

f, . Figure 9, for

.69, despite the fact

noise were absent.

For all tones,

The relative peaks in

In table 3 are given

the frequency

p=25
Amplitude Power §aggg%cy/
0.9952 0.493 .109844
4.9933 15.868 .190006
1.9903 2.102 .319906
8.0l100 67.474 .410001
3.0034 4.015 .529996
5.9869 13.091 .619997
0.9818 0.469 .690132
6.9961 18.266 .770008
4.9849 18.692 .890005
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and amplitude estimates are better for p=25 than for p=20; however, the pole power
estimates are significantly better for p=20 than for p=25. This appears to be due to
the sensitivity of the pole-power to the proximity of the pole to the unit circle;
see (11) or (13). 1In fact, the best pole-power estimates for this example were
obtained at p=18. Thus there appears to be a trade-off between the pole-power and
amplitude approaches, depending on the proximity of each pole to the unit circle.

When white noise power rﬁ is increased to 1, the value of p must be increased
to maintain reliable results; an example is presented in figure 12. And when the
noise power is increased to 10, the spectral estimate for p=50 is given in figure 13.
The weaker tones at f/fN = .11 and .69 which have SNRs = -13 dB, have erratic esti-
mates for their pole-powers and amplitudes. Larger values of p could conceivably
be advantageous for these lowef SﬁR tones. Since the number of available data points
is N=1000 here, larger values of p are certainly admissable; in fact, Akaike is
gquoted (ref. 1, page 575, footnote) as allowing p as large as BN%, which would be
ébout 100 for this example of N=1000. The stronger tones in figures 12 and 13 still
yield reliable frequency and amplitude estimétes. For example, in figure 13, 1 dB
tone at f/fN = .19 is estimated to be at .1901, with amplitude 4.91 (rather than 5},
and the pole-power estimate is 11.2 (rathef than 12.5). Similarly, the equal-
strength tone at f/fN = .89 is estimated to be at .8902, with amplitude 4.69. The
correspondings estimates for the larger SNR case in figure 12 were even better.

We now consider some examples of tones in colored noise. 1In particular, the
additive-noise spectrum is depicted in figure 14 and is observed to have a 45 dB

dynamic range over the zero-to-Nyquist frequency intervai;see appendix C for this noise

examﬂe. We now add three tones at the frequencies

=54, 454, 654

m

2

5,46, (24)

17
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with SNRs -10, -20, -30 dB respectively, where these signal-to-noise ratios are
measured with respect to the noise in the entire zero-to-Nyquist band. The strongest
tone at fl is located in the region of highest noise density. 1In fact, although the
signal strength drops by 10 dB in going from frequency fl to fz, the noise density

drops by 21 dB; thus the local SNR fatio of spectral densities)is better by 11 dB

at £ relative to fl' In going from f2 to £

2 the signal strength drops by another

37
10 dB, while the noise density drops by 7 dB; thus the "local" SNR at f2 is 3 dB
better than that at fa. A‘more thorough treatment is given in appendix C.

The spectral estimate for N=1000 and p=25 is shown in figure 15. As anti-
cipated by the "local" SNR results above, the sharpest and most accurate spectral
peak is near fz. The frequency corresponding to the argument of the pole-pair is
written directly above each peak in figure 15 et seg., thereby enabling a ready measure
of accuracy.

In figures 16 and 17, the data is left unchanged, and p is increased to
S0 and 75, respectively. The frequency estimates are progressively better in
figures 15-17. The tone amplitude estimates in figure 17 for p=75 are accurate
within 1.2%, 2.3%, and .02% respectively, of the true values; the pole-powers are
less accurate, being off by 16%, 16.3% and 1.7%, respectively.

In the next series of plots, the tones are decreased 10 4B in strenéth,

to -20, -30, ~-40 dB SNR at flp £_, f3, respectively. Figures 18-21 correspond re-

2
spectively to p=75, 100, 125, 150.
The two weaker tones, of -30 dB SNR at f/fN = .45, and -40 dB SNR at f/fN =

.65, are both very well indicated for all the values of p considered; however the

strongest tone, of -20 4B SNR at f/fN = .15, is never really indicated at all. The

18
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only reason we indicated the frequency corresponding to the argument of the pole
near f/fN = .15, is that we knew the true tone location for this simulation
example. In practice, the spectral peak at f/fN = .15 is not significantly larger
than its neighbors to be able to declare it reliably; in fact, the spurious peak
near f/fN = .54 is larger than the true tone at f/fN = ,15. This example points
out that the "local' SNR (ratio of signal energy to noise spectral denéity) %s mére
important in detecting and estimating tones that the "global" SNR (ratio of tone power.ta
noise power ). This result is similar to the standard FFT approach. Also see appendix C;
The "ribbon width" of fluctuations, in the spectral estimates of figures
18-21, is uniform with frequency, regardless of the local density value; see ref. 1,
page 572. However, this ribbon width is increasing as the order, p, of the filter
increases. This is a manifestation of the resolution-vs.-stability tradeoff that
one must acéept in spectral analysis. Specifically, as p increases, the frequency
resolution improves, but the stability of the estimates degrades.
The relative amplitudes of the tone indications near f/fN = .45 and .65
in figures 18-21 are not important, because these peaks are narrower than the FFT
frequency-increment, and we undoubtedymissed the maximum peak value; for example,
in figure 21, the 3 dB bandwidth of the peak r;ear‘f/fN = .65 is .00l whereas the
frequency increment is 2/1024 = .002. Thus, since the pole shifts slightly when p
is changed, we can get variabie spectral indications. The tone amplitude indicators-
are rather good for figure 21, being in error by 2.1%, 8.3%, and 5.6% respectively.
The frequency accuracy of the two weaker tones is extremely good, despite

the low SNR. The minimum error is realized for p=125 for this particular example.

19
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The best value of p to use probably depends on N, the number of data points avail-
able, and the local SNR. Whether the number of tones present is a factor is un-
known.

Cne last example of eight tones with various SNRs ranging from -10 dB
to -50 dB is presented in figures 22 and 23 for p=150 and 200, respectively. The
frequency and SNR of each tone is indicated under the peak indication, while
the estimated frequency is written above the peak,in figure 22. The two tones
corresponding to f/fN = .15 and .75 are not detectable; on the other hand, the
-50 dB SNR tone at .95 is clearly detectable. 1Increasing p to 200 in figure 23
gives a rather clear indication of the tone at .15, but the tone at .07 is marginal
now; but in neither case is the tone at .75 detected.*

When the strength of the tone at f/fN = .75 was increased by 10 dB, its
spectral indication increased by 20 dB. This indicates a thresholding effect; that
is, if the local SNR is sufficiently large, a good indication of tone presence is

obtained, but if the SNR is decreased, this indication rapidly disappears?

* In appendix C, a quantitative measure of detectability is defined and illustrated

for this example of eight tones.

20




T™ No.
791218

COMMENTS

The applicability of linear predictive spectral analysis to multiple tones
in noise has been demonstrated in a number of examples, including some tones with
very small SNR. The best filter-order, p, to choose depends on the number of
available data points, N, and is also probably a function of the local SNR (ratio

-of signal energy>£§ néise density)r . at the frequency of interest. What may be
indicated here is several plots, each for a different value of p, all computed from
the same data, in order to best detect and estimate different level t§nes in cdlored
background noise. If so, the recursive procedure of ref. 5 is very useful, since
one can plot spectral estimates at any selected points of the recursion.

If only one large value of p is of interest, an apparent alternative pro-
cedure is to usé the straightforward matrix inverse approach for that order p alone.
This may be quicker and more accurate, if the computational effort is smaller.
However, a pxp matrix will be necessary to store the sample correlations required
in the F&B technique, and this can be excessive for large p (>100). The storage
requirements of the Marple algorithm are very reasonable, even for very large p.
Névertheiess, it would be worthwhile to qonduct at least one data set through both
procedures, in order to ascertain the accuracy and reliability of these extensive
data-processing routines that are being contemplated.

Some results om a comparison of linear predictive techniques with conventional

Fourier analysis, and resolution capabilities of each, are presented in refs. 8 and 9.

21
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PROGRAMS

A Fortran program for the recursive solution of the predictive-filter
coefficients, via the normal matrix equations encountered in the linear predictive
F&B technique, has been presented in ref. 5. This program has been modified some-
what here and written in BASIC for the Hewlett Packard 9845 Calculator, for the
two cases of real data and complex data. Modifications, leading to minimization
“of execution time, include: elimination of divisions in favor of multiplications;
use of auxiliary variables to minimize the number of repeated calculations and table
loock-ups; movement of some variables outside loops to minimize look-ups; eliminate
some unnecessary calculations; and correction of one programming error. These two
programs are available from the author; they ﬁave been compared with the direct
matrix inverse procedure, with ll-decimal agreement in results. A simple example

and sample print-outs are given in appendix B.

22
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APPENDIX A. ZERO LOCATION OF (7(2)
For a complex function £(z), suppose we have evaluated f£(z) and its

derivative at a point z, fairly close to a zero z of £(z). Then we can express

1

R

£f(z) f(zl) + f’(zl)(z-zl) for z near z (a-1)

1-
We can then get an estimate of the zero location of f£(z) by setting (A-1) to
zero; we obtain the estimate

f(zl)

27 "l e — (£' (z)) # o), (A-2)
f (z,)

’
This procedure can be repeated by evaluating f and £ at point z_; the procedure

2
converges if f'(zo) # 0, that is, if z is a simple zero of £(z).
For our application, f(z) is given by polynomial (2). It is thus a simple
matter to evaluate the function and its derivative at any point z. The starting
point for this procedure is obtained as follows: we evaluate spectral estimate
P(f) in (1) at-a large number of equally-spaced points in IF"< %Z'f hg
means of an FFT. We then select particular frequencies where P(f) is very large
compared to neighboring frequency points and use these as starting points in re-
cursion (A-2). That is, a poipt on the unit circle in figure 1 very close to (;

is used as starting point z. . Recursion leads to the closest zero of (2&) , namely

1

2 .
o

45/46




™ No.
791218

APPENDIX B. FIVE-TONE EXAMPLE, PRINT OUT, AND INTERPRETATION

The example of interest here is the one given in (23), namely five equal-

amplitude complex exponentials

§
Y = kZ-exy(izwﬁAn) o 1xns N= 100, (8-1)
=)
where
{L - ZA‘Fk = =, 65.) - 38) .22) ~7°) .85 . (B_z)
N

The first method of processing the data is:subtract the sample mean and
then employ the F&B procedure. The computer print-out results are presented in
table B-1, and are interpreted as follows. The sample meaﬁ of the data is complex
and is given by the number —.02—1.003727.. The sample variance of the data is
4.8796. The least-squares algorithm has several different ways of terminating its
recursive procedure; the criterion encountered here is status 1, which indicates
that the maximum specified order of 5 was realized without satisfying any of the

is .00831. The best Hiiter
stopping criteria. The prediction-error power of the best prediction-filterpweights
are complex and given by the five pairs of numbers listed together. The variance
from the graph is realized by numerically integrating under the spectral estimate
(1) by means of the Trapezoidal rule, at the FFT points computed, and using the
prediction-error power given above. The locations of the poles are specified by
their real, imaginary, magnitude, and argumentﬁr values, respectively. The power
content of each pole and its 3dB bandwidth are evaluated according to (11l) and

(6). Bnd the amplitude of the corresponding tone is accomplished according to
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(14). These are the results quoted in table 1 in the main body of this memorandum.
The corresponding spectral plot in figure 2 is reproduced here in figure B-1 for
easy reference and comparison to the following results.

It was noted that subtraction of the sample mean from a set of data can
create an effective dc component in the original process, and thereby require an
additional order in the filter for its prediction. This is the reason that the
prediction-error power of .00837 above is not zero. When we increase the filter
order to 6, the results of table B-2 and figure B-2 are obtained. We notice a
significant dc indication in the figure and a nearly-zero prediction error power
of -2.1E-10; round off error has led to this very small negative number, corresponding
status indicator 4, and a negative variance from the graph. We also notice that for
this noise-free case, all six poles are now on the unit circle and have exactly
the correct frequency, except for round-off error. The last pole is actually just
outside the unit circle near 2z=1, and corresponds to the created dc compoﬁégt noted
earlier. The power content and bandwidth outputs are spurious for this example,
due to round-off error.

Lastly, we consider the effect of not subtracting off the sample mean, but
keeping p at 5, the results of which are given in table B-3 and figure B-3. We
again see perfect pole location estimation , as predicted by (16)-(18), and a
negative prediction-error power of -3.45E-11, due to round-off error. The spectral

plots in figures B-1 through B-3 are very similar, except for the dc indication in
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figure B~-2, for reasons indicated above.
When noise is added to the tones, the significance of removing or‘leaving

the sample mean in the data becomes far less. It appears that the only time it is

important,is when the true dc component is very large, in which case the sample

mean should be removed so as not to contaminate the spectral estimate in the

neighborhood of zero frequency. All the results in the main body of this memorandum

have had the sample mean removed.
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LIMERR FREDICTIVE SPECTRAL RAMALYSIS FOR COMPLEX LATH.
FORWARD AND BACKWARD AYERAGING. MARPLE ALGORITHM, S LDEC
FILTER MWEIGHTS; 3SPECTRUM; POLE LOCSTIONS AMD POWERS.
MUMBER OF COMPLEX DATA POINTS = 184

MAXIMUM OQRDER OF FILTER = S

=}
)

MERM OF DATR =

- )
YARIAMCE OF DATH 51

TE-
BTy
STATUS OF STOPPIMWG CRITERION = 1

FREDICTIGCH~ERROR POWER = 3,370183559372E-93

OFTIMUM ORDER OF FILTER = S

PREDICTIGM-FILTER WEIGHTS:

-, 732229028328 LBTRBIISEZIET

~.T36333573B4 -, 262384443721
.2125675g%:z2 717233385238
. 501325884537 . 5223477352791

-.533323945939 » 728735507257

WARIAHNCE FROM GRAPH = 1,788944711355

LOCHTIONS OQF FOLES! REAL, IMAG,MAG,ARG.PI

-. 453512513599 ~.399372893423 LFFETIS13E282 -.542%1145394
Power cantent of pole = (37BT3ITISTLISS s dB Ba dwidth = 1,.228872377B3E~04
Fmplitude of tone = 373852179292

. 3EBER13T1824 ~.F2ITI13I9H333 L BITRZZSTETE2
Fower contens of poles = (987185863788 2 4B Pandwidth = 1
Anplituds of tone = 930254793853

T 7B3433768 CEBRT48503838 5 CABIVLSTIIEZS 220852021854
Power content of pales = 344548318737 2 4B Zandwidth = 5.37793548S35E-95
Amplitude of tong = 373375239791

. SEBTREEETT2 3924251541893 SPETIBLEETI42 LBIFIETLT293
Puler content of poles = 390498115523 2 dF Barndwidth = 5,.5938FF47441E~-04¢
Anplitude of tone = ,9381047207853
-. 299283825827 453332783288 LI9SR 2ES2522 CRSRASTYIILT
FPowgr content of poles = |, 394132375334 3 dE Randwidth = 8,20554253147E-24
Faplitude of tone = 973728291359

Table B-I. &Mp Mean SuH:racfezl3

Best Available Copy
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LINEAR FPREDICTIYE SPECTRAL ANALYSIZ FOR COMPLEY DATA.
FORMARD AMD BRCKWARD AYERAGIMG. MARPLE ALGORITHM, 5 DEC 73,
FILTER MWEIGHTS; Z2ZFECTRUM: POLE LOCATIOMS RMD °HhE s,
NUMBER 0OF COMPLEX DATR POINTS = 1499
MAXIMUM ORDER OF FILTER = 8
MEAM OF DRTA = -E.RBQBQBEBCS E-G2 ~-2.F2722031351E-43
YARIANCE 0OF DATA = 4,3735351877%

STATUS OF STOPPIMG CRITERIOM = 4
PREDICTIDON-ERROR POWER =-2.13353977571E~18
OPTIMUM ORDER OF FILTER = §
PREDICTION-FILTER WEIGHTS:

295255531579 .8.3948454152

LA58581548857 -.3438542713¢22

.4 4h4=39314* .99130638663?

-. 238378931211 -.133517 51?76
-. 832358553291 . 2845383355298

534547133345 -. 7233638 426 e
YARIANCE FROM GRAPH =-93,433955343%
LOCATIONS OF POLES: REAL, IMAG,MAG, ARGAPI
= 453938439742 ~. 37188524193 i , -.55
Power content of pole = § 2 dB Bandwidth = @
Amplitude of tons = ,253%47478875

LIBR124552632 -.323778435323 1 <. 373999995937
Powser content of pales = 3 2 dB Bandwidth = &
Anplitude of tone = ,3283423335352

L TTOS13242771 «B3TH233297%4 P FIFIAITIARRG 219993335399
Power content of pole = 9 3 dB Banduwidth = 5
Amplitude of tone = (988913321798

-.58F7Vas5252224 » 2820189394359 1 » 53339933959
Powsr content of pols = 8 3 dB Bandwidth = g ’
Aaplitude of tone = .9385115411899% -
-. 2518983524125 453338493756 1 ' « B43939323393%
Power content of pole = @ 3 4B Bandwidth = 3
Arplitude of tone = 978338550257
Cl.ava8e591274 ~3.54387941244E-33 1. 29330831259 ~2. 751363574 232E~99
Fower content of pols = $,03334794442E-04 3 dB Bandwidih =-3,37370431152E~-3%
Amplitude of tone = 1,5132538175SE-83

Table 32, Sawple Mean Subbmetd; y= ¢

Best A\iailable Copy
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LIMERR PREDICTIWE SPECTRAL AMALYSIS FOR COMPLEX DATHA

FORMARD AND BRCEMARD AYERARGIHG. MARPLE ALGORITHA, 3 DES T3
FILTER WEIGHTS; SPECTRUM; POLE LOCATIONS AMD FOWERE.

HUUMEER 0OF COMPLEX DATA POINTS = 139

MAR¥IMUM ORDER OF FILTER = 5

MEAM OF DATR = -2.0993504882

. BYE=-
YARIAMCE OF DRATR = 4.3739399%9

32 =3.72722031951E-03 net Subbracted
92 .

3TATLS 0OF STOPPING CRITERION = 4
PREDILCTIONM-ERROR POWER =-3.44715425332E-11
QPTIMUM ORDER OF FILTER = S
PREDICTION-FILTER WEIGHTS:

-. 794144430743 L B7IE434735405
-.T37462942076 .753455799393,

.312813565511 717991819515
- . 5B15365448 524333279376
-. 534547185331 . TZE963527 434

YARIAHCE FROM GRAPH =-1.3353293ST83E-928

LOCATIONS OF POLES: REAL, IMAG,MAG,RARG-PI

-, 453339433742 -, 321936524158 ! - &3
Power content of pols = 8 % 4B Bandwidth = 2
Amplituds of tons = .97B158872932
3631245528731 -, 323778485335 1 - 3FIFIFIIIIIT
Fouer cantsnt of pole = @ 3 4B Bandwidth = 8
Amplitude of tone = 338242323532
LTTRSL3SSITET LB3ITIIIIZETS 1 C213933539359
Powezr contsnt of pole = 8 2 dB Bandwidth = 8
Amplitude of rons = (920@1B3217V53
C-.85772525z2291 LSEFO18994334 1 : or
Power content of pole = 9 3 dB Bandwidth = @
Rmplitude of tons = ,331154118932
-. 591886572419 4533304337352 1 . ES
Power content of pole = A 3 dB Banduwidth = @ '
Amplituds of tore = 371217504253

"Table B3-3. Jawple Mean Net Sub‘k‘fac‘éed) Pp=9S

Best Available Copy
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APPENDIX C. DETECTABILITY CRITERION

Suppose a received waveform x{) is characterized as follows:

s+ nl); H, |
= ’ c-1
) n®, H, (&
where sS{) is a deterministic signal waveform and nfd is a stationary noise process

with spectrum &..(F) let us process x 1linearly according to correlation operation

2—=_(de({')>‘65) (C-2)
where weighting w(f) is to be selected to maximize the deflection of output random

variable 2, Letting m and « be the mean and variance of z, we define deflectn.on
P e -my  [S#We ST
2 - -
L [FWElre® (c=3)

for processor (C-2). The optimum weighting is found to be

W (—F) Sl(i)) ) (C-4)

with corresponding maximum value

E§ | |
&= zm )

Now suppose that signal s is narrowband, so much so that the bandwidth

of lS‘qf)r is narrower that the finest detail of &,ff) at the signal center fre-

quency fs. Then (C-5) becomes

d, = fdﬂgg &(F) (c-6)

where E is the received signal energy; this result is typical in white noise
backgrounds. This latter quantity is a "local" measure of signal-to-noise ratio

at fs' and is the governing statistic for detectability. Values of (C-6)greater
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than 10 are typically needed for good detection and false alarm probabilities.
Let us now consider a sampled process, with time increment 4a, and

fu= Cuoﬂ, Then we can let

&) = G‘n(o))(wc/ﬂ) b )Fl< £, (c-7)

where }00 is a shape function defined over luj< |, with value 1 at W =0. Then

noise power +i I
= Ldf G W) = &, (0) ﬁ, J.du /?(U), (c-8)

giving

& J(qt/m

in terms of ff and the shape function.

(C-9)

If our signal consists of a pure tone of frequency fl and amplitude

Al' and duration N samples, then

2

E = 5-aN, _ _ (C-10)

and (C-6) yields )
R S (73 (et

n

The leading term in (C-11) is the SNR of this signal tone, referred to the total
noise in the band (- fﬂ,fﬁ) The number of samples available, N, enters linearly
into this result. And the last term depends on the shape of the noise spectrum

The noise example we will consider is that depicted in figure 14, namely

3
= BN, = BN, N W (c-12)
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where W, is white noise with variance 6£3 and
o = 0.7. (C-13)

We find, for example (C-12),

= 2 0:7 A ) ypy<+i
&0 |1 «exp(-imt/4,)|

W) = - (== <
() ll-{@xr(—ivu}]‘ y ul< |

J(0)=|, ’B(') = '—(Qi);_ (=-4-5.ZdB For %:O.'D

4 )

J:du JW = (- V»((:::;;u ) (: 067615 for = o.‘x>

2 |+ 4et+ <7
o,;“?.: " (‘-—’(z)s (:-‘ °]2.750‘;3 %Y & = 0,7) (C__|4)

Substitution in (C-1l1l) yields

2 2 “+ 6
d:. - A;Laz N \+(r'—°(’<1;;°< I-v(ex];(-—;fﬁc. /-F”>I (C-15)
Y : ‘.
I~ N == MP(’W{' /ﬁ’) : (c-16)

Equation (C-15) is evaluated in table C-1 for the parameters of figure
2
22. It will be observed that values of do less than approximately 15 correspond
1
to tones that are difficult to detect in figure 22, whereas values of cL greater

than 15 correspond to the detected tones in figure 22. Thus the linear predictive
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technique yields not only the spectral estimate of the process under investigation,
but also detects tones at local SNRs only a couple of dB poorer than an optimum
processor. The quantitative measure in (C-6) is a very useful parameter for

quickly ascertaining the detectability of tones in colored noise.

BE A2 (49 d:

.07 -10 17.6
.15 -20 13.2
.35 -30 57.9
.375 -30 80.6
" .45 -30 190.4
.65 -40 89.1
.75 -50 14.1
.95 -50 22.0

Table C-1. Deflections for Figure 22; N = 1000, « = 0.7
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